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ABSTRACT

We report the discovery of SDSSJ115517.35+634622.0, a previously unknown

gravitationally lensed quasar. The lens system exhibits two images of a z = 2.89

quasar, with an image separation of 1.′′832±0.007 . Near-IR imaging of the system

reveals the presence of the lensing galaxy between the two quasar images. Based

on absorption features seen in the Sloan Digital Sky Survey (SDSS) spectrum, we

determine a lens galaxy redshift of z = 0.1756. The lens is rather unusual in that

one of the quasar images is only 0.′′22 ± 0.′′07 (∼ 0.1Reff) from the center of the

lens galaxy and photometric modeling indicates that this image is significantly
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brighter than predicted by a SIS model. This system was discovered in the course

of an ongoing search for strongly lensed quasars in the dataset from the SDSS.

Subject headings: quasars: general; gravitational lensing

1. Introduction

Under certain conditions, the gravitational potential of a foreground galaxy can produce

multiple images of a background quasar. These rare events are of considerable interest

due their utility in a number of astrophysical investigations, including modeling the mass

distribution of the lens galaxy (Kochanek 1995), measuring the Hubble constant through

time delay measurements (Refsdal 1964; Kundic et al. 1997; Koopmans & Fassnacht 1999),

and constraining cosmological models through the use of lensing statistics (Turner 1990;

Fukugita et al. 1990; Chae et al. 2002). Many of these applications would benefit from a

sample of gravitational lenses defined by a clearly understood selection procedure, so as to

allow for the correction of selection effects.

The Sloan Digital Sky Survey (York et al. 2000, henceforth SDSS) dataset provides an

excellent opportunity to discover gravitationally lensed quasars. The ∼ 104 deg2 of five-band

photometry and the spectroscopic sample of ∼ 105 quasars should allow for the compilation

of a lensed quasar sample which is both large and statistically well-defined in comparison

to existing optical samples. For further discussion on this subject, the reader is referred to

Pindor et al. (2003, henceforth P03). In this work, we report the discovery of a previously

unknown gravitationally lensed quasar, found during our ongoing search for such objects in

the SDSS dataset.

2. Observations

2.1. Selection as a Lens Candidate

Five-band photometry of SDSS J115517.35+634622.0 (henceforth SDSS J1155+6346)

was obtained in the course of normal SDSS imaging13 on 2001 January 26. The object

was classified as a galaxy by the automated star-galaxy separator and is bright enough

(rPETRO = 16.8) that it was targeted for spectroscopy by SDSS galaxy target selection

13The SDSS photometric designation is (run/rerun/camCol/field/id) 2078/22/1/84/169
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(Strauss et al. 2002). SDSS spectroscopy14 on 2002 February 11 instead revealed the object

to be a quasar at a redshift of z = 2.89. Having been identified as a quasar, the object was

initially selected as a lens candidate by a method similar to that used to select the first two

SDSS-discovered gravitational lenses (Inada et al. 2003a, Inada et al. 2003b) as well as for

having apparent Mg II absorption at a redshift of z = 0.72. It finally received follow-up

spectroscopy when observed as part of a sample which passed the selection criteria described

in P03.

Briefly, both of the aforementioned selection algorithms work by searching among spec-

troscopically confirmed quasars for objects that are extended15 and that can be decomposed

into two components of similar colours. The algorithm of Inada et al. uses photometric

model likelihoods measured by the SDSS photometric pipeline (Lupton et al. 2001, hence-

forth PHOTO) to identify extended objects and decomposes objects using flux moments.

P03 uses photometric models consisting of one and two point spread functions (henceforth

PSF) to identify extended objects and to decompose objects. Our two PSF photometric

model of the SDSS atlas image predicted a component separation of 1.′′87, a flux ratio of

A/B = 5/4, and a position angle of −87◦.

The SDSS is a photometric and spectroscopic survey across 10,000 square degrees of

the northern Galactic cap using the 2.5m SDSS telescope at Apache Point Observatory.

SDSS imaging is carried out with a wide-field camera (Gunn et al. 1998) which makes nearly

simultaneous observations of objects in five passbands: u g r i z. Together, the passbands

cover the optical wavelengths from the atmospheric cut-off in the blue to the minimum

detectable energy for the silicon CCDs in the red (Fukugita et al. 1996). Photometric

calibration of the imaging survey is separately carried out by an automated 0.5m telescope

which monitors a set of standard stars (Smith et al. 2002) while photometric data is being

acquired(Hogg et al. 2001). The SDSS imaging camera also incorporates astrometric CCDs

which provide astrometry of detected objects with an accuracy typically better than 0.′′1

(Pier et al. 2003). SDSS spectroscopy is carried out on the same telescope by two fiber-fed

double spectrographs which produce spectra with a resolution (λ/∆λ) of ∼ 2000 covering

the wavelength range 3800–9200 Å. Together, the spectrographs have 640 fibers which are

assigned based on previous SDSS imaging through an efficient tiling algorithm (Blanton

et al. 2003). For more comprehensive documentation of the survey, readers are encouraged

to consult Stoughton et al. (2002) and Abazajian et al. (2003).

14The SDSS spectroscopic designation is (mjd/plate/fibre) 52316/598/87

15We use the word “extended” to mean “not consistent with being a point source” and the word “resolved”

to mean “displaying two distinct photometric peaks”
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2.2. Spectroscopic Observations

We observed the object on 2002 May 4, using the 6.5m Multiple Mirror Telescope

(MMT). Spectra were obtained using the blue channel of the MMT spectrograph with the

300/mm grating and 1′′ slit. The slit was aligned along the separation axis of the pair, as

predicted from SDSS imaging by a photometric model consisting of two point sources (see

P03), so that the two components were observed simultaneously. The spectrum was obtained

with a single 300s integration.

Although the seeing at the time of observation was slightly sub-arcsecond, the two ob-

jects were only marginally resolved in the focal plane due their small separation (∼ 1.′′8).

Consequently, we implemented a deblending procedure to minimize cross-contamination be-

tween the extracted 1D spectra. We binned the 2D spectrum into 20 bins along the dispersion

axis and integrated the flux in these bins to produce a series of spatial cross-sections. We

then simultaneously fit a profile consisting of two Gaussians to each of these cross-sections,

subject to the constraint that the separation of the two Gaussians be the same in each bin.

Finally, we defined two apertures by assigning a fraction of the flux from each pixel to the first

(second) aperture corresponding to the fractional contribution of the first (second) Gaussian

to the model profile at that pixel. Hence, the model profiles can be thought of as relative

weights which determine how much of the flux in a given pixel should be assigned to either

of the two apertures. This deblending procedure is conceptually based upon the deblending

algorithms used by PHOTO. Having been thus deblended, the spectra were then extracted

using standard IRAF routines. Figure 1 shows the spectra of the two components. Note

that the feature at ∼ 7600 Å is atmospheric. We cross-correlated the spectra and estimated

the velocity difference between them to be 100 ± 300 km s−1, consistent with zero.

We further examined the spectra for evidence of emission from a lens galaxy. The SDSS

spectroscopic pipeline identifies in the SDSS spectrum a cross-correlation match to a series

of galactic absorption features at a redshift of z = 0.1756. In fact, this match is reported

with a confidence level (99.73%) only marginally lower than the match to the quasar redshift

(99.75%). This redshift identification is slightly suspect due to the fact that the purported

calcium H and K lines appear in the Lyman-alpha forest. However, as shown in Figure 2,

a number of the absorption features are clearly visible in both the SDSS and MMT spectra.

Hence, we report a redshift measurement of z = 0.1756 for the possible lens galaxy.

We also examined the absorption doublet seen at ∼ 4810 Å in both components. This

doublet was identified in the SDSS spectrum as being Mg II in absorption at a redshift of

z = 0.72. Its location relative to the broad N V emission line might suggest that it is the

N V doublet in absorption in the vicinity of the quasar. In Figure 3 we show the best-fit

locations of the Mg II and N V doublet systems overlayed on the SDSS spectrum, which,
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although spatially unresolved, has better spectral resolution and signal-to-noise than our

MMT spectrum. We conclude that we are in fact observing Mg II absorption at a much

lower redshift. It is possible that this absorber is associated with a mass concentration

which contributes to the lensing properties of the system, but it is impossible to test this

hypothesis with the existing data.

We consider the spectra alone to be inconclusive with respect to whether this system

was a lensed or binary quasar. The lensing hypothesis is supported by the fact that the

spectra are similar in overall shape and have similarly peaked emission lines. Spectroscopic

identification of a possible lens galaxy clearly also supports the lensing hypothesis. On the

other hand, the equivalent widths of the emission lines in the fainter B component are about

twice the widths in the brighter A component. This seems inconsistent with the spectra

being two images of the same quasar. However, in the next section, we present further

evidence that reconciles the observed spectral differences with the lensing hypothesis.

2.3. Near-IR Imaging

Having determined that SDSS J1155+6346 did indeed have two separate quasar images

at the same redshift and with similar SED, we next obtained a near-IR image. On 2002

August 8, we imaged the object in the K ′-band using the Near Infrared Camera (NIRC,

Matthews & Soifer 1994 ) on the Keck I telescope. The observations consisted of a five-point

dither pattern, integrating for 10s at each pointing. The data were flattened, sky subtracted,

shifted, and stacked using the DIMSUM package in IRAF.

Figure 4 shows the K ′-band of SDSS J1155+6346. It is evident from visually inspect-

ing this image that component A is extended. It is our interpretation of this image that

SDSS J1155+6346 is indeed a gravitational lens, and that the lensing galaxy is almost co-

incident with the quasar image we have labelled A. To support this interpretation, we first

constructed a model of the system consisting of only two point sources. We used an analytic

PSF consisting of two Moffat functions, as recommended by Racine (1996). The half-width

of our PSF model was determined by fitting to a nearby star, labelled P. Figure 5a shows the

residuals of the best-fit two point source model. The peak residuals are 32% of the peak in-

tensity. The highly negative (white) residuals near the center of component A are produced

as the model attempts to account for the extended profile by over-estimating the central

flux. Since the images are background-dominated, the measurement errors can be inferred

from the observed sky variance, and our two point-source model has a reduced chi-square

of 442. We subsequently constructed a model of the system as a combination of two point

sources plus an extended component represented by a deVaucouleurs profile of the form:



– 6 –

I(x, y) = I0exp(−7.67((x2 + (y/q)2)1/2/Reff)1/4) (1)

convolved with the PSF, where q is the axis ratio (b/a). In general, our model should also

allow the position angle of the galaxy on the sky to vary, but we found that the major and

minor axes happen to be well-aligned with the pixel grid. Our best-fit model has a reduced

chi-square of 6 (with 11014 degrees of freedom) and the peak residuals are 7% of the peak

intensity. We interpret the obvious improvement observed for our two point sources plus

deVaucouleurs model as definitively demonstrating the presence of a lens galaxy. Figure

4b shows the residuals left after subtracting our model from the data. The structure of

the residuals near component B indicate that the inaccuracy of our PSF model probably

dominates the uncertainties in the model. For this reason, estimation of the errors in the

model parameters is not straightforward. We estimated the random errors through boot-

strap re-sampling, but this does not adequately represent the systematic errors. Hence, we

considered two further photometric models; one consisting of two analytic PSFs (as before)

plus an exponential disc, and one consisting of two empirical PSFs, directly using the image

of P as a PSF model, plus a deVaucouleurs profile (as before). The best-fit exponential disc

model has a reduced chi-square of 21, and it differs from our initial model mainly in that it

predicts roughly equal flux in the two quasar images and substantially less total flux in the

lens galaxy. Figure 5c shows the residuals left after subtracting this model from the data.

The substantially worse chi-square value indicates that the lens is an early-type galaxy, as

is in fact indicated by visual inspection of the image. The best-fit empirical PSF model

actually has a lower reduced chi-square value, 4.5, than our initial model. However, using

the image of P directly requires by-hand masking of a fainter nearby source, as well as of

the local gradient produced by the extended profile of the lens galaxy. For this reason, we

retain our initial model as the favoured photometric model of the system. Figure 5d shows

the residuals left after subtracting the empirical PSF model from the data. The main dif-

ference between the results of the empirical PSF model and our initial model is that the

distance between the center of the lens galaxy and quasar image A [henceforth ∆θAG] is

about twice as great in the former as in the latter. Hence, the main systematic uncertainty

appears to be in the relative position of the lens galaxy, and the extent of this uncertainty

is indeed underestimated by our bootstrap error estimation. Our favoured model predicts

∆θAG = 0.′′15, but a more robust estimate can be obtained from average of ∆θAG as predicted

by the analytic and empirical PSF models, whereby ∆θAG = 0.′′22 ± 0.′′07 (systematic). The

fairly large reduced chi-square of our best-fit model indicates that further information (i.e.

more reliable errors) could be obtained from the image if a more satisfactory PSF model

could be found. Table 1 summarizes the best-fit parameters for all three models. The near

coincidence of the lens galaxy and quasar A can lead to some confusion so, for clarity, let
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us explicitly state: when refering to, for instance in Figure 1, component A, we mean the

unresolved combination of quasar A and the lens galaxy, which is brighter than the resolved

image of quasar B. However, the results of our photometric modeling indicate that quasar

image A itself is fainter than quasar image B.

In order to further verify the results of our photometric model, we constructed a differ-

ence spectrum by multiplying the spectrum of component A by the flux ratio predicted by

our model and then subtracting the result from component B. Figure 6 shows this difference

spectrum. The difference in C IV line appears to be consistent with zero, but significant

residuals remain in the vicinity of Lyman-alpha. However, given that our sightline to quasar

image A obviously passes quite close the center of the lens galaxy, it is not unreasonable

to expect some difference in the quasar spectra due to absorption and/or micro-lensing.

Further, if our identification of the lens galaxy redshift, z = 0.1756, is correct, then the

residuals are quite possibly due to the 4000 Å break which we would expect to observe in the

vicinity of ∼ 4700 Å. We interpret the difference spectrum as broadly confirming the results

of our photometric modelling, but as not having sufficient signal-to-noise to contribute to

estimation of the lens model parameters.

We also matched SDSS J1155+6346 with the 2MASS Second Incremental Data Release

Point Source Catalog and found it to have a K-band magnitude of 14.6±0.1. We can use the

2MASS measurement to calibrate the total magnitude of the system, so that our photometric

model of the NIRC image predicts K magnitudes16 of 14.9±0.1, 16.6±0.1 and 17.4±0.1 for

the galaxy, quasar B, and quasar A, respectively.

A measurement of the lens galaxy magnitude allows us to estimate its redshift, using the

Faber-Jackson (1976) relation for lensing as presented by Rusin et al. (2003). We re-write

Rusin et al.’s equation (A1) in the form

mobs − M∗0 = DM + 2.5γE+Kzd − 1.25γFJ log∆θred (2)

where DM is the distance modulus, γE+K is a parameter subsuming evolution and spec-

tral K-corrections, γFJ is the slope of the Faber-Jackson relation in the chosen band, zd

is the lens galaxy (deflector) redshift, and ∆θred is the reduced image separation, ∆θred ≡

(∆θ/∆θ∗)(Ds/Dds), where ∆θ∗ is the image separation produced by a singular isothermal

sphere with a velocity dispersion of 225 km s−1, and Ds and Dds are the angular diameter

16We neglect the conversion between K and K’ as it is a negligible correction relative to our photometric

accuracy.
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distances between the observer and source and deflector and source, respectively. The K-

band values of M∗0(= −24.4 + 5logh), γE+K(= −0.31), and γFJ(= 3.40) are all given by

Rusin et al., based upon HST photometry and spectrophotometric modelling of 29 early-

type lens galaxies. We can then numerically solve Equation (2) to get zgalaxy = 0.17 ± 0.03.

Hence, our photometric redshift estimate is in excellent agreement with the tentative spec-

troscopic redshift presented in §2.2. If we accept the galaxy redshift to be ∼ 0.17, then an

SIS model predicts a velocity dispersion of ∼ 190 km s−1 in order to reproduce the observed

image separation. However, an SIS model also predicts a B/A flux ratio of ∼ 10:1 (for our

favoured model, ∼ 5:1 for the galaxy position in the empirical PSF model), rather than the

observed ∼ 2:1. Possible explanations for this discrepancy include some combination of a

large internal or external shear, microlensing, or a significant softening of the inner slope of

the mass profile. The discrepancy could also be explained if the distance between the galaxy

and quasar image A is significantly greater than our models predict.

3. Conclusions

In the course of an ongoing search for strongly lensed quasars in the dataset produced

by the SDSS, we have discovered an object which is almost certainly a previously unknown

gravitationally lensed quasar. High angular resolution spectroscopy confirms two quasar

images with an angular separation of ∼ 1.′′8 having identical redshifts of z = 2.89. We also

identify the presence of absorption features corresponding to a lens galaxy at a redshift of z =

0.1756. High resolution near-IR imaging clearly indicates the presence of a luminous, early-

type galaxy between the quasar images. Our photometric model of the system implies an

angular separation of 1.′′832±0.007 between the quasar images. We used 2MASS photometry

to measure the lens galaxy magnitude as being K = 14.9. This magnitude allows for a

photometric estimate of the lens galaxy redshift as being z = 0.17±0.03, based on the Faber-

Jackson relation for lensing. One of the quasar images is only 0.′′22 ± 0.′′07 (∼ 0.1Reff) from

the center of the lens galaxy. Hence, the optical depth to quasar micro-lensing (Wambsganss

2001) for this image may be by quite high. Similarily, higher resolution multi-band imaging

of the system could provide an interesting measurement of the differential reddening (Falco

et al. 1999) produced by the central region of the prominent lens galaxy.
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Fig. 1.— Superimposed MMT spectra of component A (dashed line) and component B (solid

line). Vertical labels indicate the positions of quasar emission lines at a redshift of z = 2.89.

The feature at ∼ 7600 Å is atmospheric.
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Fig. 2.— Upper Panel: SDSS spectrum of SDSS J1155+6346 with a template of prominent

galactic absorption lines at redshift 0.1756 superimposed. The indicated transitions are (rest

wavelengths, in Å): Ca K (3934) H (3969) G band (4308) Mg I (∼ 5175) Na D (∼ 5895).

Lower Panels: Close-up on regions with possible absorption features associated with the

lens galaxy. The upper spectrum is the unresolved SDSS spectrum. The lower spectrum

is the MMT spectrum of component A. The spectra have been scaled to have the same

counts and an arbitrary offset has been introduced to separate them. In all panels, the

lower wavelength scale denotes the observed wavelengths and the upper scale denotes rest

wavelengths corresponding to a redshift of 0.1756.
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Fig. 3.— SDSS spectrum of SDSS J1155+6346 in the vicinity of 4800 Å. The solid vertical

lines indicate the position of the Mg II doublet at a redshift of z = 0.718. The dashed lines

indicate the position of the N V doublet at a redshift of z = 2.8755
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Fig. 4.— NIRC K ′-band image of SDSS J1155+6346. Components A and B labelled in-

dicating which component corresponds to which spectrum in Figure 1. Flux contours have

been added to emphasize the extended profile of component A. Also indicated is P, the star

used to model the half-width of the model point spread function. Up is 101◦ west of north.
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(a) (b)

(c) (d)

Fig. 5.— The remaining residuals after subtracting the best-fit model consisting of (a): two

analytic PSFs. (b): two analytic PSFs plus a deVaucouleurs profile convolved with the PSF.

(c): two analytic PSFs plus an exponential disc convolved with the PSF. (d): two empirical

PSFs plus a deVaucouleurs profile convolved with the PSF. The extended ring of residuals

shows where the empirical PSF has been truncated to mask out other sources, as explained

in the text. The greyscale is the same in all four panels, but is different from the greyscale

in Figure 4.
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Fig. 6.— Difference of spectra for components A and B. The dotted curve is unscaled

difference A−B. The solid curve is difference A−(B × ratio of A to B as determined by

photometric modelling of NIRC image). The dashed vertical lines and vertical labels indicate

prominent galactic absorption features at a redshift of z = 0.1756, as described in Figure 2.

The lower wavelength scale denotes the observed wavelengths and the upper scale denotes

rest wavelengths corresponding to a redshift of 0.1756. The lower horizontal labels indicate

the regions of quasar emission lines at a redshift of z = 2.89.
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Table 1. Photometric Model Parameters for SDSS J1155+6346

Quasar A Quasar B Galaxy

Two Analytic PSFs plus deVaucouleurs

Relative RA (′′) 0 -1.795 ± 0.007 -0.14 ± 0.01

Relative Dec (′′) 0 -0.364 ± 0.004 -0.062 ± 0.006

Relative Flux (K ′-band) 1 2.0 ± 0.2 10.2 ±0.6a

K-Band Magnitudeb 17.4 ± 0.1 16.6 ± 0.1 14.9 ± 0.1a

Reff (′′) 2.2 ± 0.1

Axis Ratio (b/a) 0.89 ±0.02

Two Analytic PSFs plus Exponential Disc

Relative RA (′′) 0 -1.728 -0.063

Relative Dec (′′) 0 -0.343 -0.047

Relative Flux (K ′-band) 1 0.9 1.3 a

Two Empirical PSFs plus deVaucouleurs

Relative RA (′′) 0 -1.792 -0.188

Relative Dec (′′) 0 -0.377 -0.220

Relative Flux (K ′-band) 1 2.0 8.6 a

aWithin measured effective radius

bCalibrated to 2MASS photometry


